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Direct and Indirect Effects in a Survival Context
Theis Langea and Jørgen V. Hansenb

Abstract: A cornerstone of epidemiologic research is to understand
the causal pathways from an exposure to an outcome. Mediation
analysis based on counterfactuals is an important tool when address-
ing such questions. However, none of the existing techniques for
formal mediation analysis can be applied to survival data. This is a
severe shortcoming, as many epidemiologic questions can be ad-
dressed only with censored survival data. A solution has been to use
a number of Cox models (with and without the potential mediator),
but this approach does not allow a causal interpretation and is not
mathematically consistent. In this paper, we propose a simple
measure of mediation in a survival setting. The measure is based on
counterfactuals, and measures the natural direct and indirect effects.
The method allows a causal interpretation of the mediated effect (in
terms of additional cases per unit of time) and is mathematically
consistent. The technique is illustrated by analyzing socioeconomic
status, work environment, and long-term sickness absence. A de-
tailed implementation guide is included in an online eAppendix
(http://links.lww.com/EDE/A476).

(Epidemiology 2011;22: 575–581)

A cornerstone of epidemiologic research is the understand-
ing of causal pathways from an exposure to an outcome.

For example, how much of the observed increase in the risk
of breast cancer among postmenopausal women from alcohol
consumption or obesity is mediated through an increase in
women’s estrogen levels? Cohort studies could provide mea-
surements of risk factors and estrogen levels at baseline and
data on time to diagnosis of breast cancer or study end
(whichever comes first). A second example, which will be
used throughout this paper, is the effect of socioeconomic
status (SES) on the risk of experiencing long-term absence

due to sickness. It is well documented that SES strongly
affects the risk of experiencing long-term sickness absence.
This effect seems to be at least partly mediated through
differences in the physical work environment among SES
groups,1 but how much?

A common causal structure underlies many epidemiologic
problems. In the case of an outcome that is either binary or
normal, a number of techniques have been developed to assess
the relative importance of the various paths from the exposure to
the outcome.2–6 However, as illustrated by our 2 examples, the
outcome of interest will often be time-to-event (or, in other
words, survival time). In the SES example, this would be
number of weeks from baseline to onset of first long-term
sickness absence or study end. As is well known, survival times
are non-normal and will typically be right censored.

In this paper, we propose a simple measure of mediation
in a survival setting. The measure is based on the counterfactual
framework7 and has direct causal interpretation. The method
allows the total effect (adjusted for confounders) of changing an
exposure, eg, SES, on a time-to-event outcome to be measured
as the number of additional events per unit of time. Furthermore,
the method can decompose this number of additional events into
a part attributable to the direct pathway and a part mediated
through a given mediator. In the SES example, the method
enables us to compute how many long-term sickness cases could
be prevented per week if the SES groups were changed from the
lowest to the highest. This number of prevented cases can then
be decomposed into a part mediated by physical work environ-
ment and a direct part.

To assess the magnitude of the pathway from SES
through physical work environment to time to onset of
long-term sickness absence, the traditional approach esti-
mates hazard ratios of SES from Cox models both with and
without adjusting for physical work environment (the poten-
tial mediator). A change in hazard ratios is taken as evidence
of mediation through physical work environment. However,
as previously pointed out in the literature,8,9 such an analysis
of mediation has severe shortcomings. Most importantly, the
observed changes in hazard ratios cannot be given a causal
interpretation. In addition, the important assumption of pro-
portional hazards can never be satisfied for both models with
and without the mediator. In other words, it is not mathemat-
ically consistent to use a Cox model both with and without a
potential mediator (mathematically, this is due to the fact that
the class of proportional hazard models is not closed under
marginalization).
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The paper proceeds as follows. We introduce the model
framework and describe the counterfactual variables and the
required assumptions. Next, we present our proposed measures
of mediation and illustrate the technique on the problem of
mediation in the relationship between SES and long-term sick-
ness absence. The subsequent section discusses generalizations
and limitations of our proposed method. All technical details are
deferred to eAppendix 1 (http://links.lww.com/EDE/A476),
eAppendix 2 (http://links.lww.com/EDE/A476) contains a de-
tailed guide to implementation in the software package R, and
eAppendix 3 (http://links.lww.com/EDE/A476) presents a small
simulation study.

THE MODEL FRAMEWORK
Assume that measurements have been made of the time

to an event (T) or censoring, whichever comes first, an
exposure (X), a potential mediator (M), and other baseline
covariates (Z). In the SES example, T is time to onset of
long-term sickness absence; X is SES group; M is physical
work environment; and Z is sex, age, etc. Recall that the rate
at time t measures the probability of experiencing an event
within the next unit of time, given that a person has not
experienced an event before time t. The usual Cox model
applied to the SES example yields an estimate of how many
times greater the rate is for a given SES group relative to a
reference group, ie, the hazard ratio. However, because this
ratio cannot be related to an absolute number of events and
the mathematical structure of the Cox model fits poorly with
mediation analysis, we suggest modeling the rate by the
Aalen additive hazard model10 instead. Applied to the SES
example, this model yields an estimate of the absolute change
in the rate when comparing a given SES group to a reference
group. This estimate (multiplied by, say, 10,000) can be
directly interpreted as the number of additional cases of
long-term sickness absence per week per 10,000 persons at
risk, when compared with the reference group. The Aalen
additive hazard model is a flexible semiparametric model for
survival outcomes and is at least as flexible as the more
widely used Cox model. In the Aalen model, the rate as a
function of exposure (x), mediator (m), and other baseline
covariates (z) can be written as

�0�t) � �1(t)x � �2(t)z � �3(t)m, (1)

where �j(t) are potentially time-dependent coefficient func-
tions. We have allowed for all coefficients to be time-
dependent (eg, the effect of SES might change over time), but
in many applications non–time-dependent coefficients will
suffice. Standard software for estimating additive hazard
models (eg, the “timereg” package in the software package R)
have built-in tools for determining which coefficients need to
be time-dependent.

In addition, assume that the mediator is a normal
variable that can be modeled by a simple linear regression.

Thus, given exposure (x) and other covariates (z), the medi-
ator can be written as

M � �0 � �1x � �2z � e, (2)

where e is a mean zero normally distributed error with
variance �2. Given a set of independent observations, stan-
dard techniques (eg, the “timereg” package) can be used to
estimate the parameters �0, �1, �2, �2, and the collection of
functions �0(t), …, �3(t).

COUNTERFACTUALS AND ASSUMPTIONS
To model the causal effect of the exposure, we also define

the following counterfactual variables, which are variables de-
scribing what would have happened if, perhaps contrary to fact,
exposure and mediator were set to specific values. For an
introduction to counterfactuals see the book by Pearl.11

• Ti
x,m indicates the time to event when the exposure is

set to x and the mediator is set to m.
• Mi

x indicates the value of the mediator when the
exposure is set to x.

In the SES example, Ti
x,m describes the time to onset of

long-term sickness absence person i would experience if SES
group was set to x and physical work environment set to m.
To facilitate the discussion of mediation, note that the afore-
mentioned counterfactuals can be combined—as for instance

Ti

x,Mi
x*

, which denotes the event time when the exposure is set
to x, but the mediator is set to the value it would have had if
the exposure had been set to x*. As it is impossible to
measure individual causal effect, we will drop the subscript i
on all counterfactuals and discuss only population-wide
causal effects (also called average causal effects).

Following the tradition in mediation analysis,4 we will
compare Tx,Mx

with Tx*,Mx
to obtain a measure of the natural

direct effect of changing the exposure from x to x*. Likewise,
we will compare Tx*,Mx

with Tx*,Mx*
to obtain a measure of the

natural indirect effect. In this context, the word “natural”
refers to the fact that we let the mediator take the value it
would take naturally when the exposure is set to x. This is in
contrast to controlled effects, where the mediator is kept fixed
at a controlled level m. As controlled effects do not allow for
an obvious definition of indirect effects, we will focus on
natural effects in this paper. Natural and controlled effects
have been discussed extensively.7,3,12

For future use, let �(t; x, m) denote the counterfactual
rate for the event when the exposure is set to x and the mediator
to m; that is, the rate for the counterfactual variable Tx,m.

ASSUMPTIONS
Whenever one wishes to draw causal conclusion from

an analysis, a number of assumptions about absence of
unmeasured confounders (sometimes referred to as exchange-
ability assumptions) must be satisfied. In particular, we must
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assume that there are no unmeasured confounders for the
exposure-outcome (A.1), the mediator-outcome (A.2), and
the exposure-mediator relations (A.3).

Furthermore, to identify natural effects we adopt a
modified version of Pearl7 identifiability condition: (A.4)
M x* � T x,m � Z . On an intuitive level, this assumption en-
sures that the effect of the exposure has its effect through 2
distinct and nonintertwined causal pathways. The assumption
would, for instance, be violated if there is a variable that is
affected by the exposure and itself affects both the mediator
and the outcome. Indeed, it has been shown13 that if such an
exposure-dependent confounder (for the mediator-outcome
relation) exists, then direct and indirect effects will not be
nonparametrically identified. This applies to any mediation
analysis, not just in a survival setting. The literature contains
alternative (and less restrictive) versions of this identification
assumption.3,14,15 Common to these, however, is the fact that
they only work in the simpler setup of a nonsurvival outcome.

Finally, we must impose the consistency assump-
tions,16 denoted (A.5). This ensures that we do not alter the
outcome if we set the exposure and mediator to the values
they would naturally take.

THE PROPOSED MEASURE OF MEDIATION
Unlike traditional mediation analysis, where the outcome

is measured at a single time point, a causal measure of mediation
in survival analysis must take into account (1) how much of the
effect of the exposure is mediated through the mediator and (2)
how these proportions change over time. We therefore suggest
using the counterfactual rate difference as the effect measure of
the exposure changing from x to x*. In the SES example, the
counterfactual rate difference measures the added number of
long-term sickness absence cases per week caused by changing
SES group from x to x*. In many respects, the counterfactual
rate difference can be interpreted as a counterfactual risk differ-
ence.17 As will be demonstrated later in the text, this measure
can naturally be separated into 2 parts; one measuring the natural
direct effect and the other measuring the natural indirect effect.
The proof of the following theorem can be found in eAppendix
1 (http://links.lww.com/EDE/A476).
Theorem 1. Under assumptions (A.1) to (A.5), it holds that
the total causal effect of changing the exposure from x* to x,
measured on the rate difference scale at time t, can be
expressed as

��t; x, Mx� � ��t; x*, Mx*�

TE�t�
�

��t; x, Mx� � ��t; x*, Mx�
� ��t; x*, Mx� � ��t; x*, Mx*�

�
�1�t��x � x*�

DE�t� �
�3�t��1�x � x*�

IE�t�

with TE, DE, and IE denoting total effect, natural direct
effect, and natural indirect effect, respectively.

To interpret the counterfactual rate differences (ie,
TE(t), DE(t), and IE(t) in Theorem 1), imagine 3 versions of
the world at baseline. In the first version, X is set to the value
x* for the whole population and the mediator to the value it
naturally takes when X is set to x*. In the second version of
the world, X is kept at x*, but the mediator is set to the value
it naturally takes when X is set to x. In the third version of the
world, X is set to the value x and the mediator to the value it
naturally takes when X is set to x. In all other regards, these
3 versions of the world are identical at the time when X is set.
At time t, we take 3 large samples (say 10,000 persons) from
the persons still alive in each of the 3 versions of the world.
The total effect from Theorem 1 (multiplied by 10,000) is
exactly the difference in the number of deaths in the sample
from version 1 and the sample from version 3 per unit of
time. Likewise, the direct effect is the difference in the
number of deaths per unit of time between the samples from
version 2 and 3. Finally, the indirect effect is the difference in
the number of deaths per unit of time between the samples
from version 1 and 2.

In summary, the indirect effect is the number of deaths
that can be attributed to mediation through the mediator,
whereas the direct effect is the number of deaths that can be
attributed to a direct path (or to other mediators not included
in the analysis). The total effect is the number of deaths
caused by changing the exposure—ie, equals the sum of the
direct and indirect effects. In the next section, the use of the
theorem is illustrated by an application to the SES example.

If neither the exposure nor the mediator has time-
dependent effects in the Aalen model (ie, that �1(t) and �3(t)
are both constant), Theorem 1 simplifies to

��t; x, Mx� � ��t; x*, Mx*�

total effect
�

�1�x � x*�

natural direct effect

�
�3�1�x � x*�

natural indirect effect
(3)

Hence the direct as well as the indirect effects can be
expressed by a simple number instead of a function of time (t).

COMPUTING CONFIDENCE INTERVALS
This section explains how to compute 95% confidence

intervals (CIs) for total, direct, and indirect effects when the
effects are non–time-dependent, as in equation (3). The
slightly more involved case of time-dependent effects is
addressed in eAppendix 1 (http://links.lww.com/EDE/A476).

Replacing �1, �3, and �1 in equation (3) by their
estimates �̂1, �̂3, and �̂1, which are available from standard
statistical software, yields our estimate of the natural direct
and indirect effects. Under mild regularity conditions (eg,
condition 5.1 of Martinussen and Scheike17), it holds that the
3 estimators are asymptotically normally distributed and that
(�̂1, �̂3) is uncorrelated with �̂1. The covariance matrices for
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both �̂1 and �̂3, and �̂1 are available as output from any
software package capable of performing the estimation.

From equation (3), it is evident that the direct effect is
asymptotically normal, the indirect effect is asymptotically
distributed as the product of 2 uncorrelated normal random
variables, and the total effect is the sum of the direct and
indirect effects. Confidence intervals and tests involving
either the indirect effect or the total effect can be computed
using the delta rule, or better yet by simulation. In eAppendix
2 (http://links.lww.com/EDE/A476) we provide detailed
guidelines on implementing the techniques in R. Additional
R-code is available from the authors upon request.

ILLUSTRATION
To illustrate the new approach we reexamine the rela-

tion between socioeconomic status (SES, grouped in 5 cate-
gories with “I” being the highest), work environment, and
onset of long term sickness absence that is analyzed in the
study by Christensen et al.1 This example has been referred to
as the SES example earlier in the text. In the paper, the
authors analyzed Danish data obtained from a random sample
of 11,437 people collected as part of the Danish Work
Environment Cohort Study. Long-term sickness absence was
defined as 8 weeks of consecutive sickness absence, and
follow-up covered 18 months; for further details of the study
see Christensen et al.1 To assess the proportion of the effect
of SES on long-term sickness absence that is mediated
through work environment, Christensen et al1 estimated a
number of Cox models, each including additional covariates.
If inclusion of a potential mediator in the Cox model reduced
the hazard ratios associated with SES, this was interpreted as
mediation through that factor. We reanalyze the problem
using the approach developed in this paper with a newer data
set collected in December 2005. The respondents were fol-
lowed for 18 months from 1 January 2006 to 30 June 2007.
Note that, in this new data set, long-term sickness absence is
defined as 3 weeks of consecutive sickness absence. Descrip-

tive statistics are presented in Table 1. All analyses were
conducted in R (version 2.8.1).

For ease of presentation, we will focus only on the
physical work environment as mediator. The physical work
environment is quantified on a score between 1 and 100 (with
100 corresponding to a physically very demanding work
environment), obtained as the average of 5 questions. We will
use the log transform of this score, log(phys), which by
inspection appears normally distributed.

Table 2 presents the results of a Cox-based mediation
analysis similar to the one conducted by Christensen et al.1

Table 2 shows that the updated data set yields qualitatively
the same results. For example, men in the lowest SES group
(V) have a 3.25 times greater hazard of entering a long-term
sickness absence period than men in SES group I, when
adjusted for age and family status. When log(phys) is in-
cluded, this hazard ratio drops to 2.04, indicating mediation
through the physical work environment.

The first step of our approach is to run a regression
of log(phys) on SES adjusted for age and family status.
Diagnostic tests indicate that the model is well specified;
Table 3 presents the estimates. The next step is to fit the
Aalen additive model to the onset of long-term sickness
absence with age, family status, and log(phys) as covari-
ates. Standard techniques17 find no indication of time-
dependent effects. Successively including interaction
terms shows that none is significant after accounting for
the number of tests conducted. Diagnostic plots (not re-
ported) indicate that the model is well specified. Non–
time-dependent parameter estimates are presented in Table
4. A detailed step-by-step description, including required
computer code, of the estimation and subsequent calcula-
tion of the direct and indirect effects can be found in
eAppendix 2 (http://links.lww.com/EDE/A476).

Considering again the men in SES group V, it can be
observed from Table 3 that these on average have a log(phys)

TABLE 1. Descriptive Statistics by Sex and Socioeconomic Status

SES Group

I II III IV V Total

Men

No. persons 785 540 685 704 744 3458

No. cases 27 48 48 71 79 273

log(phys); mean (SD) 0.76 (1.33) 1.43 (1.33) 1.60 (1.30) 2.78 (0.93) 2.61 (0.96) 1.84 (1.41)

Age (years); mean (SD) 43.0 (9.8) 44.1 (10.1) 41.2 (11.2) 41.1 (10.8) 41.7 (11.5) 42.1 (10.8)

Women

No. persons 511 1081 1211 515 488 3806

No. cases 42 154 154 63 82 495

log(phys); mean (SD) 0.99 (1.39) 1.64 (1.23) 1.66 (1.36) 2.41 (1.08) 2.68 (0.98) 1.80 (1.34)

Age (years); mean (SD) 41.6 (9.7) 43.5 (9.9) 42.8 (11.0) 39.8 (10.5) 39.9 (12.6) 42.1 (10.8)
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score of 1.83 units higher than the men in SES group I when
adjusted for age and family status.

As the coefficients of SES and log(phys) in the Aalen
model are non–time-dependent, Theorem 1 and equation (3)
can be used to separate the total causal effect of moving from
one SES group to another into a direct-effect part and a part

mediated through log(phys). Confidence intervals for the
direct effects are available directly from the Aalen additive
model, whereas confidence intervals for the indirect and total
effects are constructed by combining the covariance matrices for
the parameter estimates of the regression and the Aalen model
using simulation. Further details of this procedure are mentioned
in eAppendix 2 (http://links.lww.com/EDE/A476).

The direct effects can be found in Table 4 and the total
and indirect effects in Table 5. As expected, high SES causes
a lower incidence of long-term sickness absence. For in-
stance, among men, a change from SES group I to V would
increase the number of long-term sickness absence cases by
10.3 (95% CI � 6.5–14.1) persons per week per 10,000 men
at risk. Of these additional cases 4.3 (2.4–6.2) or 43%
(22%–74%) can be attributed to the pathway through physical

TABLE 2. Hazard Ratios (HRs) and 95% Confidence Intervals for Onset of Long-term
Sickness Absence During 18 Months of Follow-up Using Cox Models, by SES

SES Groups

Men Women

HR (95% CI) Change HR (95% CI) Change

Adjusted for age and family status

Ia 1.00 — 1.00 —

II 2.56 (1.60–4.11) — 1.73 (1.23–2.43) —

III 2.14 (1.34–3.43) — 1.54 (1.09–2.17) —

IV 3.20 (2.05–4.99) — 1.60 (1.08–2.36) —

V 3.25 (2.09–5.03) — 2.24 (1.54–3.25) —

Adjusted for age, family status, and log(phys)

Ia 1.00 — 1.00 —

II 2.15 (1.33–3.47) 0.41 (16%) 1.54 (1.09–2.17) 0.19 (11%)

III 1.73 (1.07–2.80) 0.41 (19%) 1.36 (0.96–1.92) 0.18 (12%)

IV 1.93 (1.18–3.16) 1.27 (40%) 1.24 (0.83–1.86) 0.36 (23%)

V 2.04 (1.27–3.30) 1.21 (37%) 1.66 (1.12–2.45) 0.58 (26%)

Absolute and relative (%) change in hazard ratios when adjusting for log(phys) are reported as “Change.”
aReference category.

TABLE 3. Parameter Estimates and Standard Errors (SEs)
for the Regression (Equation 2) of Log(phys) on SES
Adjusting for Age and Family Status

SES Group
Men

Estimate (SE)
Women

Estimate (SE)

Ia 0.00 0.00

II 0.67 (0.066) 0.66 (0.067)

III 0.82 (0.062) 0.67 (0.066)

IV 1.99 (0.061) 1.41 (0.078)

V 1.83 (0.061) 1.67 (0.079)

aReference category.

TABLE 4. Parameter Estimates and Standard Errors From
the Aalen Additive Hazard Model (Equation 1) Adjusting for
Log(phys), SES, Age, and Family Status

SES Group
Men

Estimate (SE) � 10�4
Women

Estimate (SE) � 10�4

Ia 0.00 0.00

II 5.61 (1.97) 6.20 (2.40)

III 3.35 (1.66) 4.04 (2.27)

IV 5.31 (2.09) 2.56 (2.83)

V 6.01 (2.15) 8.75 (3.40)

Log(phys) 2.34 (0.54) 2.99 (0.65)

aReference category.

TABLE 5. Indirect Effects (IE) and Total Effects (TE)
According to Theorem 1 and the Ratio of Indirect to Total
Effect

IE (95% CI) �
10�4

TE (95% CI) �
10�4

IE/TE
(95% CI)

Men

I3II 1.6 (0.8–2.4) 7.2 (3.3–11.0) 0.24 (0.11–0.49)

I3III 1.9 (1.0–2.9) 5.3 (2.0–8.6) 0.41 (0.18–0.95)

I3IV 4.7 (2.6–6.8) 10.0 (6.3–13.6) 0.48 (0.24–0.83)

I3V 4.3 (2.4–6.2) 10.3 (6.5–14.1) 0.43 (0.22–0.74)

Women

I3II 2.0 (1.1–3.0) 8.2 (3.5–12.8) 0.26 (0.12–0.58)

I3III 2.0 (1.1–3.0) 6.1 (1.7–10.5) 0.40 (0.15–1.12)

I3IV 4.2 (2.4–6.1) 6.8 (1.4–12.2) 0.71 (0.27–2.40)

I3V 5.0 (2.8–7.2) 13.8 (7.5–20.1) 0.39 (0.18–0.74)

Note that the direct effect is not included as it can be found in Table 4.
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work environment. In other words, if an intervention could
improve the physical work environment of the SES V group
to the level of the SES I group without affecting other aspects
of social deprivation, 43% of the socioeconomic effect on
long-term sickness absence could be eliminated.

Likewise, Table 4 shows that men in SES group V
have a rate that is 6.01 � 10�4 units higher than for the
men in SES group I, adjusted for age, family status, and
log(phys). Thus, the direct effect of changing SES group
from I to V is 6.01 additional long-term sickness cases per
week per 10,000 men at risk.

Qualitatively, this is in accordance with the results of
Christensen et al1 and the results in Table 2, but with the befit
of allowing a causal interpretation of the results and with
confidence intervals for the ratio of indirect to total effect. For
women, the confidence intervals for this fraction correspond-
ing to SES groups III and IV include values above 1. The
explanation for this apparent paradox is that the direct and
indirect effects could have different signs, such that the total
effect is smaller than the indirect effect.

DISCUSSION
To the best of our knowledge, the only method in the

literature to quantify mediation in a survival context is dy-
namic path analysis.18–20 However, this procedure does not
provide a causal interpretation and cannot be implemented
through standard software. In fairness, it should be said that
the dynamic path-analysis framework allows both the expo-
sure and the mediator to be time dependent, which we do not
consider in this paper. Recent work21,22 has discussed how to
extend formal mediation analysis to nonlinear models (eg,
logistic models). Our work can be viewed as a continuation of
these principles to a survival context.

In this paper, we focus on the somewhat restrictive case
of a conditional normal mediator and no interaction involving
either the exposure or the mediator. The simplicity of the
expressions for both the natural direct and indirect measures
hinges on these assumptions. If they were relaxed, the coun-
terfactual framework could indeed be adapted in an obvious
way, but deriving formulas for direct and indirect effects
would be challenging as the exact probability distribution of
the mediator must be employed to obtain an expression for
the causal rate. This generalization is therefore left for future
research.

By adapting Aalen’s additive hazard model, we obtain
a simple and intuitively understandable measure of media-
tion, namely the number of additional cases per unit of time.
In addition, the separation of effects can be performed based
on output from standard statistical software. It should be
noted that similar results are not, as far as we can tell,
attainable with Cox models. However, it is in fact possible to
infer a controlled direct effect (on the hazard-ratio scale) from
a Cox model by including both exposure and mediator, but
neither natural nor indirect effects can be addressed.

We consider a single event type (which covers most
epidemiologic applications) for ease of presentation. How-
ever, the results also hold with multiple event types. Indeed
the mathematical proofs are given in the more general form of
multiple event types.

In the analysis of the SES example, the choice of
covariates was similar to those in the study of Christensen et
al.1 A potential confounder for the relationship between
log(phys) and long-term sickness absence could be attitude
toward health, which itself can be affected by SES, but no
such measurement was available. Thus, we cannot rule out
that some of the observed mediated effect of physical work
environment is due to difference in attitude toward health.

CONCLUSION
This paper has presented a novel way of quantifying

mediation in a survival context. The method provides a
simple and straightforwardly interpretable measure of both
the natural direct and indirect effects along with their confi-
dence intervals. Effects are calculated on the additive hazard
scale and can therefore be directly translated to expected
number of additional cases per unit of time.

The method is illustrated by analyzing the relationship
between SES, physical work environment, and long-term
sickness absence previously examined in the study by Chris-
tensen et al.1 As in the original analysis, we found that a
substantial part of the effect of SES on long-term sickness
absence is mediated through the physical work environment.
In addition, our analysis provides confidence intervals for the
mediated proportion, and the effect measure can be directly
interpreted as the number of additional cases of long-term
sickness absence due to differences in the physical work
environment and the number due to direct effects. eAppendix
2 (http://links.lww.com/EDE/A476) of this paper provides a
detailed step-by-step description of the analysis (including
computer code). A major issue for future research is to extend
the approach to more general types of mediators and to
incorporate interactions.
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gradient in long-term sickness absence: a prospective study of Danish
employees. J Epidemiol Community Health. 2008;62:181–183.

2. Rubin DB. Direct and indirect causal effects via potential outcomes.
Scand Stat Theory Appl. 2004;31:161–170.

3. Petersen ML, Sinisi SE, Laan MJ. Estimation of direct causal effects.
Epidemiology. 2006;17:276–284.

4. Hafeman DM, Schwartz S. Opening the black box: a motivation for the
assessment of mediation. Int J Epidemiol. 2009;38:838–845.

5. Vansteelandt S. Estimating direct effects in cohort and case-control
studies. Epidemiology. 2009;20:851–860.

6. VanderWeele TJ. Marginal structural models for the estimation of direct
and indirect effects. Epidemiology. 2009;20:18–26.

Lange and Hansen Epidemiology • Volume 22, Number 4, July 2011

580 | www.epidem.com © 2011 Lippincott Williams & Wilkins

http://links.lww.com/EDE/A476
http://www.epidem.com


7. Pearl J. Direct and indirect effects. In: Proceedings of the Seventeenth
Conference on Uncertainty and Artificial Intelligence. San Francisco,
CA: Morgan Kaufmann; 2001;411–420.

8. Cole SR, Hernán MA. Fallibility in estimating direct effects. Int J
Epidemiol. 2002;31:163–165.

9. Kaufman JS, Maclehose RF, Kaufman S. A further critique of the
analytic strategy of adjusting for covariates to identify biologic media-
tion. Epidemiol Perspect Innov. 2004;1:4.

10. Aalen O. A model for non-parametric regression analysis of counting
processes.In: Klonecki W, Kozek A, Rosinski J, eds. Lecture Notes in
Statistics, Mathematical Statistics and Probability Theory. New York:
Springer-Verlag; 1980:1–25.

11. Pearl J. Causality: Models, Reasoning, and Inference. New York:
Cambridge University Press; 2000.

12. Goetgeluk S, Vansteelandt S, Goetghebeur E. Estimation of controlled
direct effects. J R Stat Soc Ser B Stat Methodol. 2009;70:1049–1066.

13. Avin C, Shpitser I, Pearl J. Identifiability of path-specific effects. In:
Proceedings of the International Joint Conferences on Artificial Intelli-
gence; 2005:357:363.

14. Robins JM, Greenland S. Identifiability and exchangeability for direct
and indirect effects. Epidemiology. 1992;3:143–155.

15. Hafeman DM, VanderWeele TJ. Alternative assumptions for the iden-
tification of direct and indirect effects. Epidemiology. 2011;22:

16. VanderWeele TJ, Vansteelandt S. Conceptual issues concerning me-
diation, interventions and composition. Stat Interface. 2009;2:457–
468.

17. Martinussen T, Scheike TH. Dynamic Regression Models for Survival
Data. New York: Springer; 2006.

18. Fosen J, Ferkingstad E, Borgan Ø, Aalen O. Dynamic path analysis—a
new approach to analyzing time dependent covariates. Lifetime Data
Anal. 2006;12:143–167.

19. Martinussen T. Dynamic path analysis for event time data: large sample
properties and inference. Lifetime Data Anal. 2010;6:85–101.

20. Commenges D, Gégout-Petit A. A general dynamical statistical model
with causal interpretation. J R Stat Soc Ser B Stat Methodol. 2009;71:
719–736.

21. Pearl J. The Mediation Formula: A Guide to the Assessment of Causal
Pathways in Non-Linear Models �technical report�. Los Angeles, CA:
University of California; 2010.

22. VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for
a dichotomous outcome. Am J Epidemiol. 2010;172:1339–1348.

Epidemiology • Volume 22, Number 4, July 2011 Mediation in Survival Analysis

© 2011 Lippincott Williams & Wilkins www.epidem.com | 581

http://www.epidem.com

